
Design for Verification

Using Design Patterns to Build Reliable Systems1

Peter C. Mehlitz
CSC, NASA Ames Research Center

pcmehlitz@email.arc.nasa.gov

John Penix
NASA Ames Research Center

John.J.Penix@nasa.gov

Abstract

Components are mainly used in commercial software
development to reduce time to market. While some effort
has been spent on formal aspects of components, most of
this was done in the context of integration into
programming languages or operating system
frameworks. As a consequence, increased reliability of
composed systems is merely regarded as a side effect of a
more rigid testing of pre-fabricated components.

In contrast to this, Design for Verification (D4V) puts
the focus on component specific property guarantees,
which are used to design systems with high reliability
requirements. D4V components are domain specific
design pattern instances with well-defined property
guarantees and usage rules, which are suitable for
automatic verification. The guaranteed properties are
explicitly used to select components according to key
system requirements.

The D4V hypothesis is that the same general
architecture and design principles leading to good
modularity, extensibility and complexity/functionality
ratio can be adapted to overcome some of the limitations
of conventional reliability assurance methods, such as
too large a state space or too many execution paths.

1. Introduction

High dependabilitysystemscan be characterizedby
the needto satisfy a set of key propertiesat all times.
This includes standard properties like absence of
deadlocksor constantspaceexecution,and application
specific properties such as guaranteedresponsesor
“correct” results. General approachesto demonstrate
compliancewith thesepropertiesaretestingand formal
verification.

Testinghas inherentlimitations with respectto non-
reproducibleexecutionenvironmentbehavior(like thread
scheduling),which canbe regardedasnon-determinisms
that are not fully controllable in the test environment.
Thustestingcoversonly a small fraction of the potential
state space of concurrent applications.

If higher confidenceis needed,formal verification
methods,like modelchecking[1] or staticanalysiscanbe
used. However,thesemethodstendto not scalewell or
suffer imprecision, requiring abstract models to be
constructedeither manually or with tool support.This
processmay introduce fidelity problems betweenthe
model and the actual design or implementation.

Moreover,creatingmodelscan be so expensivethat
verification becomes a one time effort, which is
inconsistentwith theevolutionarynatureof largesystems
development.Thedifficulty to verify formal propertiesin
turn often leads to a lack of propertiesin the system
specification, creating additional fidelity problems by
having to guess the verification goals.

To beeffective,both testingandverificationrequirea
co-operativeprogramdesign.For testing,designchoices
mainly determinethe achievabletest granularity (unit
tests).Verification dependson a suitableprogramdesign
for applicability of its modeling techniques(e.g. for
abstraction). This leadsto the implication of explicitly
using appropriate design measures, instead of
compensatingtheir lack by meansof tools andmodeling
techniques.

A general approach to the verification of large
systemsthereforeis to usecompositionto build a system
from separatelyverifiable parts. This is the approach
followed by Designfor Verification (D4V), basedon the
assumptionthat the samedesignprinciplescan be used
not only to increaseverifiability, but alsoto help testing,
andespeciallyto improveunderstandingandextensibility
of the target system. 

1  The research described in this report was performed at NASA Ames Research Center’s Automated Software Engineering group and is funded by
NASA’s Engineering for Complex Systems program.



2. The Design for Verification Approach

In order to improve verifiability, D4V utilizes
component selection based on property requirements
derived from system specifications.

D4V componentsare not classicalmodules.Object
orienteddesignstypically usea mix of inheritance(for
static variation) and delegation(for runtime variation).
The application mainly provides parts that are hooked
into a usuallymuchbigger frameworklibrary. The most
abstractmodelfor this is not the(languagespecific)class
model, but sets of collaborating types with dedicated
roles. This is essentiallywhat came to be known as
Design Patterns [2].

DesignPatternsare mainly usedas “mental building
blocks.”Theycomewith variousdegreesof collaboration
details,rangingfrom high levelarchitecturalpatterns(not
explicitly naming interfaces or aggregates)down to
languagespecific idioms (coding patternsat expression
level) [7]. Sincea primary quality of a designpatternis
its genericity, i.e.,how readilyit canbeappliedto a range
of similar concreteproblems,patternsoften comewith a
deliberatelackof formalism,to leaveenoughfreedomfor
problem-specificimplementations.Thisotherwisehelpful
simplicity canmakeit difficult to useautomatedchecks
for correctpatternimplementationandusage,which is on
the otherhandrequiredto deducepropertiesfor a target
systemcomposedof certain patterns.Bridging this gap
between human-orientedfuzziness and tool oriented
formalism is the major challenge for the D4V approach.

Ultimately, D4V strivesto supportthedesignprocess
at two different levels:

� domain specific pattern systems
� aspect oriented  implementation

The first level provides the building blocks from
which to compose systems, the second level gives
guidelines for how to implement these components.

2.1 Domain Specific Pattern Systems
The D4V pattern systems consist of application

domain specific libraries with static pattern instance
components,plus a lookup schemato identify suitable
patterns.

Eachpatterninstancecomes with a setof guaranteed
properties,a setof formal ruleshow to usethepatternso
that the guaranteeswill hold, and codefragmentsof the
invariant parts of the pattern.

D4V Pattern Instance = Design Pattern Decscription
                                       + usage rules
                                       + property guarantees
                                       + code 

Usagerulesandpropertyguaranteescanbethoughtof
asa generalizationof programming-by-contractpre- and
post-conditions[6] in thecontextof a setof collaborating
classes with variable, application specific parts.

Usage rules mainly describeexpectedbehavior of
application-specific pattern parts, like:

Implementations of the interface method
NonBlockingObserver.update() have to return in bounded
time (are not allowed to directly or indirectly block or infinitly
loop)

Theseruleshaveto be sufficiently formal to support
automatedchecks(e.g. checkingfor absenceof certain
library function calls in a given call tree by meansof
static analysistools). It is essentialto note that these
checksareappliedto thereal targetsystem,thusenabling
verification as a developmentco-processlike regression
testing.

Property guarantees are derived from the invariant
structureof a patterninstance,basedon the assumption
that usage rules are fulfilled:

The NonBlockingObserver pattern instance guarantees that
Subject notification does not deadlock and all Observers
that are registered when the notification is initiated are
notified

Code canbeeitherinvariantlibrary components,base
class and interface (purely behavioral) definitions, or
artifacts/skeletons of application specific components.

The lookup schemabuilds upon approachesfrom
specification-based component retrieval, where
componentsare indexed by formal properties[8], [9].
Theseindexingmethodssupportbothautomatedretrieval
[10], [11] andinteractivebrowsing[12]. To representthe
design space defined by the implementation choices
made during pattern instantiation,we will build upon
Smith'sdesignspacerepresentationfor algorithms[13],
where implementationchoices progressivelyrefine an
implementation.

system

analysis

+
property

validation

Design Pattern

Pattern Catalog

Pattern Language

IF <requirement>

   . . .

   CLASS <pattern-class>

                                 <property-guarantees>

      IF <requirement>

           PATTERN <pattern-instance>

                                 <property-guarantees>

property guarantees

usage rules

code



The property guaranteesform the premier selection
criteria for pattern lookup, which constitutesthe main
principle of D4V: choosing components based on
verifiable properties derived from key requirements. 

We do not designa systemandlateron try to find out
what properties we can check by means of existing
verification tools, but ratherdesignthe systembasedon
what we want to verify.

An example for such properties could be an
asynchronous event multiplexer (EventQueue)
componentthat guaranteesnon-blocking,constanttime
multiplexing and prioritized  event retrieval.

--- PATTERN LOOKUP ---
. . .
IF system has async EventEmitters and EventProcessors
    IF some EventProcessors require synchronization
         CLASS EventMultiplexer
                                    EventEmitter not blocked
                                    EventProcessors sequenced
           IF no EventEmitter requires feedback
                IF bounded ResponseTime required
                      IF closed set of EventProcessors
                            IF Events are prioritized on type
                                  PATTERN TypePriorityReactor
                                    guaranteed processing order
                                    bounded response time for
                                          sub--critical EventRate
                                    extensible set of EventEmitters
                                         and EventProcessors
                      . . .

--- GLOSSARY ---
. . . 
EventEmitter: Component where potentially async

(environment generated) stimuli enter
the system . . .
Examples: Sensor, . . .

EventProcessor: Component which is reacts on the
occurrence of Events . . .
Examples: Controller, . . .

. . .                           

While mostof the standarddesignpatternsdescribed
in [2] can be utilized (i.e. can be annotatedwith usage
rules and property guarantees),D4V does require a
certain level of detail for the collaboration of pattern
participants.Low level programminglanguagespecific
idioms and high level architecturalpatternsare outside
the scopeof D4V. The initial implementationwill focus
on variantsof well known,standarddesignpatterns(like
Observer, Reactor etc.).

Beyond this focus on safe implementation of
“essentialsystemcomplexity,” thereis alsoan important
sideeffect of reducingharmful “accidentalcomplexity”
[3], which is a typical outcomeof adding featuresto
systemsthat were not designedfor extensibility. To
quantify this aspect,we havetakena small, moderately

object-oriented, autonomousrobot application and re
designed it using standard design patterns. 

Thepatternorientedredesignnot only resultedin the
anticipatedextensibilityandtest-suitability,especiallyfor
unit tests,butalsoshowedasignificantreductionin over-
all size, an elimination of complexity “hot spots” (also
known as “god classes”[14]), and a reduction of
constructsthat potentially causedefects(e.g. numberof
threads). 

Original version D4V version

classes 82 37

interfaces 1 10

NCLOC 5926 1745

max WMC 397 56

sum WMC 1426 389

threads 6 2

Both systemswerewritten in Java. Weighted Methods
per Class (WMC) is the sumof the methods'cyclomatic
complexities, which is a control flow complexity metric.

2.2 Aspect oriented Implementation

To improvethe verifiability of designs,D4V focuses
on three essential aspects [4] of its pattern
implementations, each one being represented by
explicitly marked and annotated code sections:

� consistent program states (CheckPoints)
� conceptual process model (ControlPoints)
� potential extensions (ExtensionPoints)

The intention behind these aspectsis to unify the
inherent design model(s) and the implementationof a
systemin a way that thesemodelsaremadeexplicit, are



consistently preserved, and later-on can be easily
extracted for automated verification purposes.

(a) CheckPoints are locations where necessarily
consistent,property relevantstateshave to be checked.
This includes freely placeableassertionsaswell aspre-,
post-conditionsand invariants.CheckPointsdescribethe
correctness model of a component implementation.

The checksthemselvescan refer to explicit program
state (variable values) and implicit execution
environmentstate(numberof instructions,relative time
etc.).

While CheckPointscan be used for non-functional
properties (like progress, resourceconsumption etc.),
they aremandatoryfor the verification of functional, i.e.
application specific properties,and are linked to their
corresponding pattern guarantees.

If the programming environment has a assertion
mechanism, evaluation of CheckPoints is straight
forward. Reachabilityanalysisand side-effectdetection
of check points should be supported by specialized tools.

To ease integration with object oriented design
(especially inheritance-awarepre-, post-conditionsand
invariants), the implementationof CheckPointsshould
preferably use languagessupporting Programming-by-
Contract [6]. Alternatively, CheckPoints can be
implementedby meansof commentbasedpre-processors
(like iContract [15]).

An examplecouldbe a setof functionalpropertiesto
be fulfilled by a event dispatchercomponentused to
processa “plan” consisting of a collection of action
nodes: 

--- PROPERTY GUARANTEES ---
P1.1 : no overlapping plan execution ...
P1.2 : upon plan execution start, all nodes

are in InitState ...
P1.3 : upon plan execution termination, all

nodes are in EndState ...
P1.4 : after plan got processed, all node

resources held by plan nodes are freed

void processPlan () {
  /** @pre: [P1.1]
      verifier.isNull(startNode);
      Handle snap =
         verifier.getResourceSnapshot();
  */
  
  startNode = readPlan();
  /** @check: [P1.2]
      verifier.allNodesInInitState(..);
  */  

  startProcessing(startNode);
  while (!terminate) {
    Event e = queue.getNextEvent();
    e.dispatch();
  }

  /** @check: [P1.3]
      verifier.allNodesInEndState(..);
  */

  releasePlan(startNode);

  /** @post: [P1.4]
      verifier.allResourcesFreed(snap);
   */
}
...

Pre- and post-conditions are kept separatefrom
checks (free assertions) because they have to comply with
inheritancerules(overriddenfunctionshaveto acceptat
leastbasepre-conditions,and haveto guaranteeat least
base post-conditions).

There are several potential levels of tool support.
Property guarantees can be checked for missing
CheckPoints.Test runscanbe checkedagainstcoverage
of CheckPoints.A target systembasedmodel checker
like JPF [1] canbeusedto checkfor assertionviolations.
The aboveexampleusesa 'verifier' delegationobject to
enable such a model checker to perform the checks
outside of the applications state space (to avoid
increasingthe statespaceby also verifying the checks
themselves).

(b) ControlPoints describethe processmodel of the
system, denoting locations that are relevant for both
testing and model checking. Only conceptual
ControlPoints are identified, not every branch in the
control flow. This especiallyincludespotentiallycontext
switching operationsin multi-threadedprograms(like
Thread start, locking attempts etc.), reflecting the
observation that 

� concurrent programs should be built around their
major synchronization points (e.g. message
dispatching loops)

� many concurrencydefects (like deadlocks,missed
signals,nestedmonitor lockout etc.) can be detected
by analyzingthesesynchronizationpoints,i.e. do not
require fine grained interleaving at statement or
instruction level

The minimal information associated with each
ControlPoint is its identifier (including thread/process),
the liveness-relevanttype of operation(wait, lock etc.,
including ControlPointsthis operationdependson), and
the set of follow on ControlPoints.

class Emitter implements Runnable {
  ...
  void run () {
    ...
    /** @cp: emitter.post */
    queue.postEvent(..);
  }
  ...
}

class Processor implements Runnable {
  ...
  void run () {
    /** @cp: dispatcher.enter */
    ...



    /** @cp: .loop next(.get,.exit) */
    while (!terminate) {
      ...
      /** @cp: .get wait(emitter.post)
                    next(.loop) */
      Event e = queue.getNextEvent();
      ...
    }

    /** @cp: .exit */
  }
  ...
}
...

For testing,ControlPoints can be usedasa basisfor
required coverage, including (automated) test case
generation.

For model checking,they can be consideredas the
“built-in model” providing potentialbacktrackingtargets
and atomic sections,to avoid the statespaceexplosion
that comes with fine-grained interleaving. The
ControlPoint information could be especiallyuseful to
give the model checker hints that are suitable to
implementsearchheuristics(e.g. to perform a “depends
first” scheduling heuristic to detect missed signal
defects).

Describing the process model outside the
implementationlanguageitself makes it possible to
extendthe level of detail so that it can be also usedfor
lesscomplex tools than a programmodel checker(e.g.
searchingfor potentiallyharmfulpatternsin ControlPoint
sequences),but it comes with the downside that
ControlPoint specifications are redundant with the
program itself.

To avoid this redundancy,we are also investigating
program designs using explicit ControlPoint APIs,
especially choice generator objects in branches.By
encapsulatingthe choice selection mechanism in a
replaceablecomponent,it becomespossible to switch
between different verification strategies(e.g. to use
“depends-first” thread scheduling to provoke missed
signal defects).

A welcomesideeffectof this approachwould be that
systemscan be testedand verified in their real target
environment, instead of the environment which is
required to run complex tools.

The result would be a hybrid model checking
approachsimilar to the state-lessmodel checking of
Verisoft [16].

(c) ExtensionPoints describe the underlying extension
model of a designby identifying the relevantconcepts
and constructs.

The reasonwhy we focuson this aspectin the D4V
context is the fact that the developmentof a complex
systemis hardlyevercompleted[5]. Thetypical caseis a
evolutionaryextensionof functionality,which caneasily
lead to accidental complexity and feature bloat (un-
controlled accumulation of functions), violating
properties which did hold in the original implementation.

While it is not feasiblenor desiredto reflect every
possibleextensionin the systemsdesign,thereshouldbe
provisionsfor the anticipatedmajor extensionsin terms
of identifying the

� relevant base classes together with their
overridable methods

� delegation types, object and configuration
methods

� generic types with corresponding type
parameter constraints

ExtensionPointsaremainly ameasureof documenting
theseconstructsso that (a) new featurerequestscan be
easily assessedregarding their feasibility, and (b)
completedextensionscanbecheckedagainsttheoriginal
design.

ExtensionPointsare closely related to UML class
diagrams,but can spanseveralclasses,or can combine
severalextensionaspectsin a singleclass.A typical case
is marking overridableprimitive operationsused in a
TemplateMethod pattern [2]. 

There are two general categories of extensions:
mandatoryand optional. Mandatory extensionsinclude
applicationspecificconcretetypesto createinstancesof
patterns using abstract delegation types. Optional
extensionsmainly include subclassesto create pattern
variants.  

The following exampleshowsextensionpoints of a
roboticsapplicationexecutinga plan consistingof user
provided  primitive operations.

 
--- EXTENSION MODEL ---

. . .
ActionType: optional extension

Abstraction for entities consisting of application specific
action objects (“what to do” ActionInstance) and plan
specific conditions (“when to do it”) ...

     ActionInstance: mandatory parameter
Abstraction for application provided primitive
operations...

/** @ext: ActionType subclass */
class Node {
  /** @ext: ActionInstance delegate */
  Action action;

  /** @ext: ActionInstance call */
  Node (Action act, ..) {..}
  ...
  /** @ext: ActionType override */
  protected void executeNodeAction() 
  {..}
  ...
}

/** @ext: ActionInstance implement */
interface Action {..}

With theseannotations,the applicationspecific parts
to implementa certaindesigncan be quickly identified,



and subsequentextensionscan be checkedfor design-
compatible subclassing.

ExtensionPointsare not meant to be used as a
replacement for the language specific type system
(ensuring existence of required methods and other
subclassingconstraints)or correctnessrelatedsemantics
(using inheritance-aware CheckPoints). 

3. Project Status and Outlook

TheD4V projectis still in its earlystages.Thecurrent
focus is on the developmentof a suitabledesignpattern
systembasedon our motivatingexample,a eventdriven,
observable, state-model based control system for
autonomousrobots. We plan to eventually have three
different versionsof the systemas a basis for metrics
comparison

� the original version exposing typical effects of
accidental complexity

� the standarddesign-patternimplementationto show
the reduction of complexity and increase of
extensibility

� a versionthat usesD4V specificpatternsto showthe
property-guarantee driven design process

This approachreflects our view that D4V is not a
radicallynewdesignmethodology,but ratherextendsand
combinesalready accepted“best design practices” in
order to overcome the traditional gap between
design/development and testing/verification, which
causesnot only problemsfor finding defects,but alsofor
subsequently fixing them.

References
[1] W. Visser, K. Havelund, G. Brat, S. Park. “Model
Checking Programs”, Proceedings of the 15th
International Conference on Automated Software
Engineering (ASE), Grenoble, France, September 2000.

[2] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides - “Design Patterns  Elements of Reusable
Object-Oriented Software”, Addison Wesley, 1995

[3] Frederick P. Brooks - “No Silver Bullet: Essence and
Accidents of Software Engineering”,  Proceedings of the
IFIP '86 conference

[4] Tzilla Elrad, Robert Filman, Atef Bader - “ Aspect
Oriented Programming”, CACM Vol 44 No. 10, October
2001

[5] David Parnas - “Designing Software for Ease of
Extension and Contraction”, IEEE Transactions on
Software Engineering, SE-5(2):128--38, Mar. 1979.

[6] Bertrand Meyer - “Object Oriented Software
Construction”, . Prentice Hall 1997

[7] F. Buschman, R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal, “Pattern-Oriented Software Architecture : A
System Of Patterns”, Wiley, 1996

[8] Amy Moormann Zaremski, Jeannette M. Wing.
“Specification matching of software components”  3rd
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, October 1995

[9] A. Mili, R. Mili, and R. Mittermeir, “Storing and
retrieving software components: A refinement based
system”,  IEEE Transactions on Software Engineering,
23(7):445-460, July 1997

[10] John Penix and Perry Alexander “Efficient
Specification-Based Component Retrieval”, Automated
Software Engineering, vol. 6, pp. 139-170, Kluwer
Academic Publishers, April 1999

[11] B. Fischer, J. Schumann, G. Snelting, “Deduction-
Based Software Component Retrieval”. Automated
Deduction - A basis for applications, Vol. III:
Applications, W. Bibel and P. H. Schmitt, eds., pp. 265-
292, Kluwer 1998.

[12] B. Fischer “Specification-Based Browsing of
Software Component Libraries”,  Journal of Automated
Software Engineering, Vol. 7, No. 2, 2000, pp. 179-200

[13] Douglas R. Smith “Toward a Classification
Approach to Design”,  Proceedings of the Fifth
International Conference on Algebraic Methodology and
Software Technology, AMAST'96, LNCS 1101, Springer
Verlag, 1996

[14] Arthur J. Riel, “Object-Oriented Design Heuristics”,
Addison-Wesley, 1996

[15] Reto Kramer “iContract - the Java Design by
Contract tool” , Proceedings of Technology for Object-
Oriented Languages and Systems, TOOLS-USA. IEEE
Press, 1998

[16] Patrice Godefroid,“Model checking for
programming languages using Verisoft”,  Symposium on
Prinicples of Programming Languages, pages 174-186.
ACM, 1997


